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Bailer (1) developed a method for constructing confidence intervals
for areas under the concentration-vs-time curve (AUC’s) with only
one sample per subject but with multiple subjects sampled at each of
several time points post dose. We have modified this method to
account for estimation of the variances. How the need to estimate
variances affects study design is discussed. An extension of Bailer’s
method is proposed where variances are modeled as a function of
the means, in order to get more precise estimates of variances. The
modified and extended methods are applied to a rat toxicokinetic
study with only two rats per time point per treatment group.

KEY WORDS: area under the curve; degrees of freedom; Satterth-
waite’s approximation; variance function; toxicokinetics.

INTRODUCTION

Bailer (1) described a technique for estimating the mean
area under the curve (AUC) of drug concentration vs time
(CxT) when only one sample per subject is available but with
multiple subjects sampled at each of several time points post
dose. He also demonstrated how to estimate the standard
error of the estimated AUC and how to test statistically for
the equality of two mean AUC’s or construct a confidence
interval for the difference of two mean AUC'’s.

Bailer’s method is elegant and simple. The tests and
confidence intervals do not depend on any models for phar-
macokinetic response, nor on any assumptions about vari-
ance homogeneity. They depend on' the assumption of nor-
mally distributed data, and as applied by Bailer, they assume
that the variances are known.

Whereas Bailer considered AUC’s computed between
two finite time points, Yuan (2) showed how to extend his
method to infinite time, provided one has an estimate of
terminal elimination rate.

We are interested in applying Bailer’s method, without
Yuan’s extension, to rodent toxicity studies in drug devel-
opment (3). In such studies, the toxicokinetic objective is to
quantify drug exposure and relate exposure to dose, sex, and
duration of dosing. Typically, a treatment group consists of
ten or fewer animals, with only one blood sample collected
per animal per day. By sampling blood from different animals
at different times post dose, the CxT curve can be charac-
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terized. Bailer’s method can be applied if two or more ani-
mals within each treatment group are sampled at each time
point. With only ten animals per group, however, replicating
at each time point severely restricts the number of time
points. We typically use a design with two animals at each of
five time points.

This report is about the utility of Bailer’s method for
such a sparse design. Our investigation revealed a compli-
cation of Bailer’s method that has minor consequences for
the sort of data to which the method has been previously
applied (1,2), with 3-4 animals sampled per time point, but
which can have more serious consequences when only two
animals are sampled per time point. This complication re-
lates to the choice of critical values used in the statistical
procedures for hypothesis testing and confidence-interval
estimation. That choice is related to the assumption of
known variances. In this report we will focus on confidence
intervals. In addition to intervals for differences between
AUC’s, we are also interested in intervals for single AUC’s.
Such intervals are useful not only to confirm exposure in the
individual treatment groups, but also to provide a basis for
comparing exposures in the toxicology species with expo-
sures in later human trials.

METHODS

Suppose a study involves J treatment groups in which
measurements will be taken at K time points t,, k =
1, ..., K; and that at time point t,, blood is sampled from
r, animals in each group. Let u;, be the measured drug
concentration from the I’th animal at time t, in the j’th group.
Let 0y and 82jk be the sample average and sample variance
from the r, replicates at time t,. Let p; and o% be the
population mean and population variance of which 0 and
s? are estimates.

Bailer’s method is to estimate the mean AUC for the j'th
group by applying the trapezoidal rule to the 0.,

K

AUCJ' = 2 Witk )
k=1

where the trapezoidal weights, w,, are

wy = (t; — t)/2 (2a)
wi = (g+g — t-1)/2 (2b)
wg = (tg — tg-1)/2 (20)
The variance of AUC; is
K
o? (AUC) = D, wiohin (3a)
k=1
an estimator of which is
K
2 (AUC) = Y, wistrk (3b)

k=1
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To construct a confidence interval for the difference of
two mean AUC’s, say AUC, and AUC,, Bailer assumed that
s2(AUC,) + s¥AUC,) is in fact the true variance of the
difference AUCl — AUGC,, rather than just an estimate of
that variance. The resulting confidence interval was of the
form

AUC, — AUG, = 7z, VsZ (AUC)) + s° (AUC,) (4)

with a critical value, z_;,, from a standard normal distribu-
tion. The use of such a critical value rather than a critical
value derived from a t distribution represents the assumption
that the square-root’s argument is a known rather than an
estimated variance. A t_,;, would be larger than z_,;,, making
the confidence interval wider to reflect the uncertainty in the
variance.

Although Bailer did not discuss confidence intervals for
a single mean AUC, we will include under the name ‘‘Bail-
er’s method’’ not only intervals such as (4), but also intervals
of the form

AUC; * 7., Vs? (AUC)

for a single mean AUC.

Generally, substituting sample variances for population
variances is safe when sample sizes are large enough, for
then t_;, approximates z_,;,. Here, however, the adequacy of
assuming that s> (AUC)) is in fact 6 (AUC;) in (4) and (5)
depends not only on the r,’s (i.e., on the sample sizes), but
also on the w,’s and the 0%, ’s. This is because s? (AUCJ-), as
a weighted sum of sample variances, has a complicated dis-
tribution that can be approximated as a chi-square with de-

®)
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grees of freedom (df), v;, given by Satterthwaite’s approxi-
mation (4):

K
> etk — D) (62)

K
v = 2 wio'}k/rk 2
k=1 k=1

It can be demonstrated that

minge — L k=1,...,K)<v< D (e~ 1
k=1

M

Moreover, for s> (AUC,) + s* (AUC,) the approximating
chi-square distribution has a Satterthwaite df of a similar
form,

2 K 2 K
v= |2 D wick [ n|? ) D D (whohdritk — 1))
j=1 k=1 J=1 k=1

(6b)

The result can be less than the sum of the two separate df’s.

By the ‘‘Bailer-Satterthwaite method’” we will mean
constructing confidence intervals as in (4) — (5) with z_,,
the critical value assuming known variances, replaced by
t.nrs  critical value based on the t-distribution with the Sat-
terthwaite df.

If prior information about the ¢”,’s is available, the
experiment could be designed to improve the chances for a
larger df. The form of (6) indicates that more replicates

Table I. Nominal 95% Confidence Intervals for Published Data

Bailer’s Data“

Bailer’s Method

Bailer-Satterthwaite Method

Dose?

Lower® Upper® Coverage? Lower Upper DF Coverage
LOW .036 .062 87.4 .0319 .066 5.4 94.1
MID .269 455 89.7 255 .469 9.3 94.7
HI .506 .631 89.9 477 .660 3.7 95.1
MID-LOW .063 250 89.6 .049 .264 9.7 94.7
HI-MID 196 323 89.4 .169 .350 4.0 95.0
HI-LOW —.009 215 91.6 —.020 227 12.9 95.1

Yuan’s Data®
Bailer’s Method Bailer-Satterthwaite Method

Sex’ Lower Upper Coverage Lower Upper DF Coverage
Female 898 1010 89.1 882 1026 5.2 94.9
Male 798 1046 91.2 738 1105 3.6 95.7
M-F —152 120 91.8 —194 161 5.0 95.2

2 Pre-phenylmercapturic acid in the livers of mice, wmole/g.
& LOW, MID, or HI are dose rates. MID-LOW, HI-MID, and HI-LOW are differences between the

respective dose rates.

¢ “Lower”” and ‘‘Upper”’ are endpoints of 95% confidence intervals computed for the actual data

reported in Bailer’s and Yuan's publications.

4 Coverage is the percent coverage from the Monte Carlo simulation described in the text.
¢ Plasma pentachlorophenol concentrations after gavage administration of pentachloroanisole to

B3C3F1 mice, pg/mL.
S M-F is MALE-FEMALE.
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Table II. Blood Concentrations (ng/mL) of CPI 975 in Rats

Nedelman, Gibiansky, and Lau

Dose (mg/kg)

10 30 100
Sex Sex Sex
Time post
dose (hr) F M F M F M
1 0.00 84.90 353.00 391.00 2790.00 1910.00
126.00 136.00 384.00 396.00 3280.00 2550.00
2 128.00 194.00 625.00 649.00 4980.00 4230.00
194.00 198.00 1410.00 1990.00 7550.00 5110.00
4 378.00 338.00 1020.00 3290.00 5500.00 7490.00
1060.00 489.00 1500.00 3820.00 6650.00 13500.00
8 138.00 298.00 933.00 844.00 2250.00 4380.00
146.00 a 1030.00 1650.00 3220.00 5380.00
24 0.00 0.00 0.00 75.70 213.00 260.00
0.00 0.00 80.50 288.00 636.00 326.00

¢ Insufficient sample for analysis.

should be sampled, i.¢., r, should be larger, where w, o7, is
larger. Prior information need not be full knowiedge of the
czjk’s. Because the w,>’s can vary greatly (e.g., see Table
1V), crude estimates of the czjk’s may suffice to order the
w2, ’s.

Or, it might be possible to estimate the variance more
precisely if something is known about how the czjk’s change
with p;,.. Suppose, for example, it is known that measured
concentrations have a constant coefficient of variation; i.e.,
Gjx = Cpyy, for some c. By fitting such a model to the data
from all treatment groups together, and using the fitted value
for the o, instead of 32jk in (3), the use of z_;, in (4)-(5) may
be a more adequate approximation, even though the vari-
ances are still not known. We will refer to such an approach
as the ‘‘Bailer-model method’’.

The relative performances of Bailer’s method, the
Bailer-Satterthwaite method, and the Bailer-model method
were assessed by Monte Carlo simulation. All such com-
puter experiments were run on VAX 4000-90 workstations
using SAS 6.08 under VMS 5.5-2.

RESULTS

Application to Published Data

Bailer (1) and Yuan (2) both presented data to serve as
examples. In Bailer’s data, there were r, = 4 replicates at
each of K = 5 time points; in Yuan’s data, r, = 3and K =
9. Table I shows confidence intervals for each single treat-
ment group and for the pairwise differences from those ex-
amples, using both Bailer’s method and the Bailer-
Satterthwaite methed. The latter intervals are wider than the
former. This is to be expected, since assuming that the vari-
ances are known results in the appearance of greater preci-
sion. However, the appearance can be deceiving. Table I also
shows the results of a simulation study where the two meth-
ods were compared for coverage. In repeated experiments,
95% confidence intervals should cover the true value 95% of
the time. Using observed sample mans as true values, the
experiments were replicated 1000 times by Monte Carlo sim-
ulation assuming normal distributions (truncated at zero) and

constant coefficient of variation. From Table I it is evident
that the known-variance assumption of Bailer’s method pro-
duces confidence intervals with only 90% coverage instead
of the nominal 95%, whereas the Bailer-Satterthwaite
method achieves nominal coverage. When simulations were
run assuming the same means and variances but using only
two replicates per time point instead of Bailer’s four or
Yuan’s three, the coverage of Bailer’s method was some-
times as low as 80%; the Bailer-Satterthwaite method main-
tained nominal coverage, but intervals were up to five times
wider than those obtained using Bailer’s method.

Application to a Rat Toxicity Study

For the compound CPI 975 under development at San-
doz, a four-week toxicity study in rats was conducted as
described in the Introduction. There were six treatment
groups determined by two sexes and three once-daily, ga-
vage dose levels (10, 30, and 100 mg/kg/day). Each group

Table III. 95% Confidence Intervals for AUC’s of CPI¢

Bailer-Satterthwaite Bailer-Model

Group® Lower Upper DF Lower Upper
LOW F — 8889 16589 1.01 2029 5671
LOW M 1731 7407 1.01 2294 6845
MID F 12248 19006 3.19 8163 23092
MID M — 5469 59001 1.30 15120 38412
HI F 33477 86294 1.87 35751 84021
HIM 32680 148817 1.58 49650 131848
MID-LOW —40.22 611.4 2.49 12.84 558.3
HI-LOW 94.07 5703 3.33 52.87 611.5
HI-MID —245.6 338.8 3.19 -285.0 378.2

% ng = h/mL, for single treatments. For differences between treat-
ments, dose-normalized blood concentrations were used, so units
are (ng * h/mL)/(mg/kg).

& LOW, MID, or HI doses are 10, 30, and 100 mg/kg. F and M are
Female and Male. MID-LOW, HI-LOW, and HI-MID are differ-
ences between the dose-normalized concentrations of the respec-
tive dose levels, averaging over sex.
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Table IV. Components of Trapezoidal-Rule Calculations for CPI
Blood-Concentration Data

Times Post Dose, t, (h)

1 2 4 8 24
0 15.90 37.16 73.24 32.41 2.43
W, 0.5 1.5 3. 10. 8.
w2 0.25 2.25 9. 100. 64.
2,0 2091 288.70 765.97 77.25 6.30
w252, /2 2.61 32479  3446.86 386251  201.62

% Dose-normalized concentrations averaged over all six dose-sex
groups.

® Sample variances of dose-normalized concentrations averaged
over all six dose-sex groups.

consisted of 10 rats. From each rat, blood samples were
collected following drug administration on day 1 and on day
22. Two rats from each group were sampled at 1, 2, 4, 8, and
24 hours post dose. We will refer to this design, with two rats
at each of five post-dose time points, as 2-2-2-2-2. Only the
data from day 1 will be considered here. Table II displays
that data.

Table III displays estimated confidence intervals for the
CPI data using the Bailer-Satterthwaite method. (The miss-
ing value for the low-dose male at 8 hours was assumed equal
to the other replicate’s value of 298 ng/mL.) The estimated
degrees of freedom are low for the single AUC’s, and the
intervals are wide. Indeed, some confidence intervals for
single AUC’s have negative lower endpoints. (The final two
columns of Table III are discussed later.)

Table IV displays the trapezoidal weights wj2 and the
sample averages and sample variances of dose-normalized
blood concentrations averaged over all six groups. From (6)
and the final row of Table IV, it is evident that only two time
points, 4 and 8 hours post dose, contribute nonnegligibly to
the Satterthwaite df. Were this known in advance, more rep-
licates could have been assigned to those time points. In-
deed, the first and last time points contribute so little that
one replicate from each of those time points could be trans-
ferred to the important points, changing the design from 2-2-
2-2-2 to 1-2-3-3-1. In that scenario, the variances at the first
and last time points could not be estimated; but since those
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time points make such a negligible contribution, the sample
variances there could be assumed to be zero.

Table V displays the results of a Monte Carlo simulation
to compare the 2-2-2-2-2 design to the 1-2-3-3-1 design. Using
the real data’s observed sample means as true values, the
experiments were replicated 1000 times by Monte Carlo sim-
ulation assuming normal distributions (truncated at zero) and
constant coefficient of variation. Whereas both designs yield
close to nominal coverage, the 1-2-3-3-1 design yields aver-
age interval widths that are considerably narrower than the
2-2-2-2-2 design.

Figure 1 suggests that for the CPI data, the variances
may be adequately modeled as related to the means by a
constant coefficient of variation across all six dose-sex
groups. Over all six groups, the average of the ratios s;, /i,
is 0.36. Table III displays estimated confidence intervals for
the CPI data using the Bailer-model method with 0.360;,
replacing s;, in (4)-(5). For single AUC’s, those intervals are
narrower than the ones obtained from the Bailer-
Satterthwaite method in five of six cases. None of the inter-
vals from the Bailer-model method include zero. For the
differences between groups, the Bailer-Satterthwaite
method yields narrower intervals in two of three cases.

Is the Bailer-model method valid? Table V includes the
results of a Monte Carlo study to investigate. Data were
simulated as described above, according to the 2-2-2-2-2 de-
sign. However, confidence intervals were constructed by the
Bailer-model method where a constant coefficient of varia-
tion was estimated by the average ratio of sample standard
deviation to sample mean. Coverages are close to nominal.
Average widths for the single-AUC inferences are compara-
ble to the narrow widths of Bailer-Satterthwaite intervals
from the 1-2-3-3-1 design. For differences between groups,
the model-based widths are slightly larger than those of the
Bailer-Satterthwaite intervals with the 1-2-3-3-1 design but
still less than those of the Bailer-Satterthwaite intervals with
the 2-2-2-2-2 design. The lack of uniform superiority of the
Bailer-model method with the real data from a 2-2-2-2-2 de-
sign reminds us that confidence intervals are indeed random
quantities; and that whereas the Bailer-model method yields
narrower intervals on average, for any particular data set the
Bailer-Satterthwaite method may produce narrower inter-
vals for some of the groups.

Table V. Comparison of 2-2-2-2-2 and 1-2-3-3-1 Designs, with Bailer-Satterthwaite Method, and Bailer-
Model Method for CPI

Coverage %

Average Width

Bailer-Satterthwaite

Bailer-Model

Bailer-Satterthwaite

Bailer-Model

Group 22222 1-2-3-3-1 22222 22222 12331 22222
LOW F 96.8 9.5 96.3 3550 1283 1218
LOW M 95.9 96.2 95.7 4790 1739 1499
MID F 95.4 95.8 94.2 15221 5567 4904
MID M 96.5 96.1 94.4 21019 8080 7658
HIF 97.1 95.7 95.3 39811 16810 15925
HI M 96.8 96.1 95.6 79017 29374 26932
MID-LOW 97.5 9.8 9.7 261 148 182
HI-LOW 97.2 96.8 96.9 271 154 185
HI-MID 97.3 95.6 97.5 301 178 219
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Figure 1: Sample standard deviations vs sample means for all six

groups from the CPI study. The line is the no-intercept least-squares

regression line.
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DISCUSSION

The Satterthwaite approximation of df is easy to com-
pute, and the Bailer-Satterthwaite confidence intervals
achieve nominal coverage whereas the intervals from Bail-
er’'s method do not. The differences between the two ap-
proaches may be small, as shown here with Bailer’s and
Yuan'’s data; but, since none of the simple elegance of Bail-
er’s method is sacrificed by performing the extra step, it is
reasonable to use the more accurate Bailer-Satterthwaite
method. Moreover, with sparse designs, not using the Sat-
terthwaite df can cause serious undercoverage by the confi-
dence intervals.

Our work was motivated by the desire to work with
sparse designs, in order to minimize numbers of test animals
and assays. With a fixed number of observations to allocate
for estimation of AUC’s and variances, certain tradeoffs
must be accepted. More time points with fewer observations
per time point increases the accuracy of AUC as an estimate
of AUC, but reduces the precision of s2 (AUC) as an esti-
mate of o2 (AUC), and vice versa. For our purposes, a five-
point estimate of AUC is adequate.

In sparse experimental designs with few replicates and
markedly heterogeneous variances and trapezoidal weights,
the accurate confidence intervals of the Bailer-Satterthwaite
method may be unpleasantly wide. Treatment comparisons
may therefore have low power. Wide intervals for single

Nedelman, Gibiansky, and Lau

treatments may be of little utility for relating toxicological
exposures to human exposures. And if there are positive
concentrations among control animals, a confidence interval
for an active treatment that includes zero casts doubt on
whether the animals in that active group were even exposed.
On the other hand, the widths honestly reflect the research-
er’s uncertainty in the AUC’s.

When sufficient prior information is available, the ex-
periment should be designed to increase precision in the es-
timation of variances,by allocating replicates where vari-
ances and trapezoidal weights are large. Or prior knowledge
of a variance-mean relationship may make modeling of that
relationship feasible. Without that prior knowledge, post hoc
examination of the data may suggest a variance-mean model.
Of course, the Bailer-model method is not strictly valid if
one chooses the variance model post hoc. Nonetheless,
data-driven approaches, with inferences drawn from models
selected by examining the data, are common in practice. The
exploratory nature of the results needs to be recognized. If
more confirmatory results are required, follow-up studies
can be more efficiently designed, as discussed above, using
what has been learned about the variance.

When using the Bailer-model method, care must be
taken in fitting the variance model. Although we achieved
nominal coverage by estimating the constant coefficient of
variation as the average ratio of sample standard deviation to
sample mean, we found that estimating it by a no-intercept
regression of sample standard deviations on sample means
led to under-coverage. The estimation of variation models is
an area of active research (5). We restricted attention to
approaches that may be less than theoretically optimal in
order to retain the simplicity of Bailer’s method. More re-
search on variance modeling in sparse-samples for applica-
tion in toxicokinetics is warranted.
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